Lysine Acetylation: A switch for OPA1-mediated membrane remodeling

Javaid Jabbar^{1,2}, Somavally Pundalik Dalvi^{1,2}, Bakht Afroze¹, David Teran Mera¹, Naomi X. Y. Ling^{3,5}, Jonathan S. Oakhill^{3,4,5}, Debnath Ghosal^{1,2}, Isabelle Rouiller^{1,2}

- 1) Department of Biochemistry & Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, 3052, Australia.
- 2) ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Parkville, Victoria, Australia
- 3) St. Vincent's Institute of Medical Research, 9 Princes Street, Fitzroy, Victoria, 3065, Australia.
- 4) Department of Medicine, University of Melbourne, Parkville, Victoria, 3010, Australia.
- 5) Australian Catholic University, Melbourne, Victoria 3000, Australia.

Abstract

Mitochondrial dynamics are regulated by coordinated fission and fusion events that rely on key proteins and lipids organized spatially within the mitochondria. The dynamin-related GTPase Optic Atrophy 1 (OPA1) is essential for inner mitochondrial membrane fusion and cristae structure maintenance. While post-translational modifications, particularly lysine acetylation, are emerging as critical regulators of mitochondrial protein function, their impact on OPA1 remains poorly characterized. In this study, I explored the effects of lysine acetylation on the short form of OPA1 (s-OPA1) using acetylation and deacetylation mimetic mutations. Through a combination of in silico analyses and functional assays, I identified lysine residues in s-OPA1 that are conserved across species and significantly influence protein stability, GTPase activity, and oligomeric assembly upon acetylation or deacetylation. Using cryo-electron microscopy and helical reconstruction, I solved the structure of s-OPA1 K328Q, elucidating the conformational changes in the G-domain upon acetylation mimetic mutation. Furthermore, I performed cryo-electron tomography which provided mechanistic insights into OPA1-mediated mitochondrial membrane remodeling and fusion.